• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Electron Devices
  • FAUTo the central FAU website
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Chair of Electron Devices
Navigation Navigation close
  • About Us
  • Research
    • Silicon Semiconductor Technology
      • Realisierung von Koppelkondensatoren für Betriebsspannungen über 1200V durch Integration von Parallelwiderständen
      • Hybrid polymer based Bragg grating sensors – Fundamental investigations and application
      • A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
      • Atomic layer deposition of dopant source layers for semiconductor doping – Characterization and modelling of drive-in processes
    • Wide-Bandgap Devices
      • Untersuchungen zur Leistungsdichte und Effizienz eines isolierenden DC/DC-Wandlers in GaN-Technologie
      • Dynamic Characterization of Molded Devices and Fundamental Investigations on Reliability
      • Charge compensation in 4H silicon carbide – Simulation, modelling and experimental verification
      • SiC-BIFET: Untersuchungen zu bipolaren SiC-Feldeffekttransistoren für das Mittelspannungsnetz
      • Development of semiconductor sensors based on silicon carbide
      • Kristallzüchtung von Nitrid-Einkristallen mit hoher Reinheit
    • Anorganische Dünnschichtelektronik
      • GRK 1161: Disperse systems for electronic applications – subproject electron devices in a nano-crystalline matrix
      • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
      • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
      • Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)
      • Local leakage currents in nanoparticulate films
    • Quantum Technologies
    • Other Projects
      • Herstellung und Charakterisierung von Heterostrukturen aus 2D Materialien
      • Entwicklung eines PDMS-basierten Mikrofluidiksystems
      • Erforschung der Oberflächenpräparation und der Rückgewinnung von Aluminiumnitrid-Substraten
      • Growth and stability of anisotropic nanoparticles in liquids
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 1: “Impedanzmessplatz für DC/DC-Wandler”
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 2: “Robuste Gestaltung induktiver Energieüberträger für bewegte Anwendungen”
      • Printable soft magnetic polymers for power electronics
      • Stability Under Process Variability for Advanced Interconnects and Devices Beyond 7 nm node
      • LightWave: High Performance Computing of Optical Wave
      • Intelligentes Leistungsmodul
    Portal Research
  • Teaching
  • Clean Room Laboratory
  • µe-bauhaus erlangen-nürnberg
    • At a Glance
    • µe-bauhaus erlangen-nürnberg manifesto
    • Background
    Portal µe-bauhaus erlangen-nürnberg
  1. Home
  2. µe-bauhaus erlangen-nürnberg
  3. At a Glance
  4. Idea and Disruption

Idea and Disruption

In page navigation: µe-bauhaus erlangen-nürnberg
  • At a Glance
    • Idea and Disruption
    • Values, Responsibility and Ethos
    • Education and Training
    • In the Workshop
    • Marketplace of Ideas
    • To think outside the box
  • µe-bauhaus erlangen-nürnberg manifesto
  • Background

Idea and Disruption

Ansprechpartner

Jörg Schulze

Prof. Dr.-Ing. habil. Jörg Schulze

Department of Electrical-Electronic-Communication Engineering
Chair of Electron Devices

Room: Room 1.122
Cauerstr. 6
91058 Erlangen
  • Phone number: +49 9131 85-28634
  • Email: joerg.schulze@fau.de
  • Website: https://www.leb.tf.fau.de/

Idea and Disruption – Engineering art as the ascent from the conceptually abstract to the intellectually concrete

Based on the analysis of the known as well as its evaluation and perfection, the students of µe-bauhaus erlangen-nürnberg develop the ability to formulate questions for new micro-, nano- and quantum electronic systems, to formulate theory-guided hypotheses for approaches to solutions and thus to help shape the technologies of the future.

At the same time, they acquire the ability to recognize disruptions and to react to them in terms of technical-economic, ecological and social progress, always complying with the principle of sustainability.


Disruption on 5th Avenue in New York City: around 1900 (no cars) and 1913 (no horses)
Photo: US National Archives & George Grantham Brian Collection

Disruptive engineering arises above all methods, it is not teachable in itself, but the scientific-technical theory, the associated craft and the way to it, which was already described by Hegel as

“the ascent from the conceptual abstract to the intellectually concrete”,

Georg Wilhelm Friedrich Hegel

is.

Abstract is understood “in the sense of the individual, the particular”. It is result of the empirical thinking, the basic operation is the comparison.

Spiritual “concrete” is result of theoretical thinking. It is the realization of basic relations, theoretical generalizations. Basic operation is classification.

Only theoretical generalizations enable the transfer to novel requirements.

And only that enables disruption!

Disruptive engineering that can create innovations results from deep knowledge of science and technology

For this reason, we see the thorough technical, electrotechnical training of all students in workshops and on trial and work stations and the ability to think in a networked manner as an indispensable basis for all electrotechnical work.


Georg Wilhelm Friedrich Hegel (1770-1831), German philosopher, most important representative of German idealism; painting by Jakob Schlesinger (1831), National Museums in Berlin | Photo: Jakob Schlesinger (1792-1855), Public Domain, Wikimedia Commons

Chair of Electron Devices
FAU Erlangen-Nürnberg

Cauerstr. 6
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up