• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Electron Devices
  • FAUTo the central FAU website
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Chair of Electron Devices
Navigation Navigation close
  • About Us
  • Research
    • Silicon Semiconductor Technology
      • Realisierung von Koppelkondensatoren für Betriebsspannungen über 1200V durch Integration von Parallelwiderständen
      • Hybrid polymer based Bragg grating sensors – Fundamental investigations and application
      • A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
      • Atomic layer deposition of dopant source layers for semiconductor doping – Characterization and modelling of drive-in processes
    • Wide-Bandgap Devices
      • Untersuchungen zur Leistungsdichte und Effizienz eines isolierenden DC/DC-Wandlers in GaN-Technologie
      • Dynamic Characterization of Molded Devices and Fundamental Investigations on Reliability
      • Charge compensation in 4H silicon carbide – Simulation, modelling and experimental verification
      • SiC-BIFET: Untersuchungen zu bipolaren SiC-Feldeffekttransistoren für das Mittelspannungsnetz
      • Development of semiconductor sensors based on silicon carbide
      • Kristallzüchtung von Nitrid-Einkristallen mit hoher Reinheit
    • Anorganische Dünnschichtelektronik
      • GRK 1161: Disperse systems for electronic applications – subproject electron devices in a nano-crystalline matrix
      • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
      • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
      • Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)
      • Local leakage currents in nanoparticulate films
    • Quantum Technologies
    • Other Projects
      • Herstellung und Charakterisierung von Heterostrukturen aus 2D Materialien
      • Entwicklung eines PDMS-basierten Mikrofluidiksystems
      • Erforschung der Oberflächenpräparation und der Rückgewinnung von Aluminiumnitrid-Substraten
      • Growth and stability of anisotropic nanoparticles in liquids
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 1: “Impedanzmessplatz für DC/DC-Wandler”
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 2: “Robuste Gestaltung induktiver Energieüberträger für bewegte Anwendungen”
      • Printable soft magnetic polymers for power electronics
      • Stability Under Process Variability for Advanced Interconnects and Devices Beyond 7 nm node
      • LightWave: High Performance Computing of Optical Wave
      • Intelligentes Leistungsmodul
    Portal Research
  • Teaching
  • Clean Room Laboratory
  • µe-bauhaus erlangen-nürnberg
    • At a Glance
    • µe-bauhaus erlangen-nürnberg manifesto
    • Background
    Portal µe-bauhaus erlangen-nürnberg
  1. Home
  2. Research
  3. Silicon Semiconductor Technology
  4. A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications

A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications

In page navigation: Research
  • Silicon Semiconductor Technology
    • Realisierung von Koppelkondensatoren für Betriebsspannungen über 1200V durch Integration von Parallelwiderständen
    • Hybrid polymer based Bragg grating sensors - Fundamental investigations and application
    • A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
    • Atomic layer deposition of dopant source layers for semiconductor doping - Characterization and modelling of drive-in processes
  • Wide-Bandgap Devices
  • Anorganic Thin Film Electronics
  • Anorganische Dünnschichtelektronik
  • Quantum Technologies
  • Other Projects

A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications

A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications

(Third Party Funds Group – Sub project)

Overall project: A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
Project leader: Lothar Frey
Project members:
Start date: 15. January 2013
End date: 14. January 2017
Acronym: STEEP
Funding source: EU - 7. RP / People / Initial Training Networks (ITN)
URL: http://www.steep-itn.eu/index.aspx

Abstract

The overall aim of the STEEP Initial Training Network is to establish a transnational research and training platform for the formation and career development of young researchers on energy beam (EB) processing methods - laser, abrasive waterjet machining and focused ion beam machining - which together represent a scientific field of critical importance for further advancement of European of high value-added manufacturing industry.

 

Whilst these processes differ in nature, a set of key commonalities can be identified among them when considered as dwell-time dependent processes; this allows the approach of EB processes under a unitary technology umbrella. The key element that brings all the EB processing methods together under the STEEP umbrella is a unifying modelling platform of the footprints, as a result of energy beam - workpiece interactions, followed by the development of an original beam path simulator.

 

Stage 1: Develop a generic modelling platform to predict the full 3D profile of footprints obtained as a result of the interaction between any energy beam and geometrically complex target surfaces.

Stage 2: Develop methods to calibrate the generic footprint models for various EB processing methods; validate the modelling approach on different EB processes.

Stage 3: Develop a beam path simulator that uses the modelled footprints to convolute full 3D surfaces; testing of the beam simulator will enable corrective actions to the EB parameters for error minimisation.

Stage 4: Implement the beam path simulator on real workstations to generate micro/meso/macro freeforms using three complementary energy beam processes (waterjet, laser, ion beam).

Among other tasks, the work at the Chair of Electron Devices (FAUEN) focused on two specific aspects of focused ion beam (FIB) processing and modelling: Detailed analysis and characterization of redeposited material during FIB sputtering of silicon and the determination of the current density profile of the ion beam tails by dedicated scanning spreading resistance microscopy (SSRM) measurements of FIB induced damage in silicon.

Publications

  • Kaliya Perumal Veerapandian S., Beuer S., Rumler M., Stumpf F., Thomas K., Pillatsch L., Michler J., Frey L., Rommel M.:
    Comparison of silicon and 4H silicon carbide patterning using focused ion beams
    In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 365 (2015), p. 44-49
    ISSN: 0168-583X
    DOI: 10.1016/j.nimb.2015.07.079

Chair of Electron Devices
FAU Erlangen-Nürnberg

Cauerstr. 6
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up