• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Electron Devices
  • FAUTo the central FAU website
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Chair of Electron Devices
Navigation Navigation close
  • About Us
  • Research
    • Silicon Semiconductor Technology
      • Realisierung von Koppelkondensatoren für Betriebsspannungen über 1200V durch Integration von Parallelwiderständen
      • Hybrid polymer based Bragg grating sensors – Fundamental investigations and application
      • A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
      • Atomic layer deposition of dopant source layers for semiconductor doping – Characterization and modelling of drive-in processes
    • Wide-Bandgap Devices
      • Untersuchungen zur Leistungsdichte und Effizienz eines isolierenden DC/DC-Wandlers in GaN-Technologie
      • Dynamic Characterization of Molded Devices and Fundamental Investigations on Reliability
      • Charge compensation in 4H silicon carbide – Simulation, modelling and experimental verification
      • SiC-BIFET: Untersuchungen zu bipolaren SiC-Feldeffekttransistoren für das Mittelspannungsnetz
      • Development of semiconductor sensors based on silicon carbide
      • Kristallzüchtung von Nitrid-Einkristallen mit hoher Reinheit
    • Anorganische Dünnschichtelektronik
      • GRK 1161: Disperse systems for electronic applications – subproject electron devices in a nano-crystalline matrix
      • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
      • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
      • Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)
      • Local leakage currents in nanoparticulate films
    • Quantum Technologies
    • Other Projects
      • Herstellung und Charakterisierung von Heterostrukturen aus 2D Materialien
      • Entwicklung eines PDMS-basierten Mikrofluidiksystems
      • Erforschung der Oberflächenpräparation und der Rückgewinnung von Aluminiumnitrid-Substraten
      • Growth and stability of anisotropic nanoparticles in liquids
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 1: “Impedanzmessplatz für DC/DC-Wandler”
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 2: “Robuste Gestaltung induktiver Energieüberträger für bewegte Anwendungen”
      • Printable soft magnetic polymers for power electronics
      • Stability Under Process Variability for Advanced Interconnects and Devices Beyond 7 nm node
      • LightWave: High Performance Computing of Optical Wave
      • Intelligentes Leistungsmodul
    Portal Research
  • Teaching
  • Clean Room Laboratory
  • µe-bauhaus erlangen-nürnberg
    • At a Glance
    • µe-bauhaus erlangen-nürnberg manifesto
    • Background
    Portal µe-bauhaus erlangen-nürnberg
  1. Home
  2. µe-bauhaus erlangen-nürnberg
  3. µe-bauhaus erlangen-nürnberg manifesto

µe-bauhaus erlangen-nürnberg manifesto

In page navigation: µe-bauhaus erlangen-nürnberg
  • At a Glance
  • µe-bauhaus erlangen-nürnberg manifesto
  • Background

µe-bauhaus erlangen-nürnberg manifesto

Ansprechpartner

Jörg Schulze

Prof. Dr.-Ing. habil. Jörg Schulze

Department of Electrical-Electronic-Communication Engineering
Chair of Electron Devices

Room: Room 1.122
Cauerstr. 6
91058 Erlangen
  • Phone number: +49 9131 85-28634
  • Email: joerg.schulze@fau.de
  • Website: https://www.leb.tf.fau.de/

µe-bauhaus erlangen-nürnberg manifesto – The adaptation of the Bauhaus founding manifesto


The Bauhaus logo, designed in 1922 by the Stuttgart painter, sculptor and stage designer and Bauhaus master Oskar Schlemmer | Photo: Public Domain, Wikimedia Commons

In the modern reception of the Bauhaus Weimar-Dessau-Berlin, the main focus is on the still visible results of the creative work of the “Bauhäusler””: their buildings, pictures, design studies, experimental photographs, furniture, textiles, fabrics, … Less attention is paid to the “school” and the teaching concept behind the Bauhaus. We followed this teaching concept, in which the “workshop” plays a central role, and studied the collaborative work of teacher and student, of “master” and “student” at the Bauhaus. In doing so, we realised that it is not only possible to produce architects, designers, painters, … who can change and shape the world. Ultimately, the founding manifesto of the Bauhaus can be applied directly to modern, forward-looking engineering education with just a few adaptations:

The art of engineering arises above all methods; it cannot be taught in itself, but the necessary engineering skills can.

inspired by the Bauhaus founding manifesto, 1919

For this reason, an indispensable basis for our work must be the thorough craft training of our students in workshops and on trial and error stations.

The “school” is the servant of the workshop.

in accordance with the Bauhaus founding manifesto, 1919

The nature of our apprenticeship springs from the essence of the workshop. This includes: the avoidance of all rigidity, the preference for the creative, the freedom of individuality, but also a deep and strict theoretical study of science and technology.

This requires the students to participate in the work of the teachers and the joint planning and realization of extensive ideas and designs.

We are in constant exchange with local, national and international industry and research, in touch with public life and maintain a partnership between teachers and students; and at meetings outside work we also want to deal with philosophy, art & culture and society & politics.

And then it’s simply a matter of getting down to work together!

Chair of Electron Devices
FAU Erlangen-Nürnberg

Cauerstr. 6
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up