• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Electron Devices
  • FAUTo the central FAU website
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Chair of Electron Devices
Navigation Navigation close
  • About Us
  • Research
    • Silicon Semiconductor Technology
      • Realisierung von Koppelkondensatoren für Betriebsspannungen über 1200V durch Integration von Parallelwiderständen
      • Hybrid polymer based Bragg grating sensors – Fundamental investigations and application
      • A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
      • Atomic layer deposition of dopant source layers for semiconductor doping – Characterization and modelling of drive-in processes
    • Wide-Bandgap Devices
      • Untersuchungen zur Leistungsdichte und Effizienz eines isolierenden DC/DC-Wandlers in GaN-Technologie
      • Dynamic Characterization of Molded Devices and Fundamental Investigations on Reliability
      • Charge compensation in 4H silicon carbide – Simulation, modelling and experimental verification
      • SiC-BIFET: Untersuchungen zu bipolaren SiC-Feldeffekttransistoren für das Mittelspannungsnetz
      • Development of semiconductor sensors based on silicon carbide
      • Kristallzüchtung von Nitrid-Einkristallen mit hoher Reinheit
    • Anorganische Dünnschichtelektronik
      • GRK 1161: Disperse systems for electronic applications – subproject electron devices in a nano-crystalline matrix
      • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
      • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
      • Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)
      • Local leakage currents in nanoparticulate films
    • Quantum Technologies
    • Other Projects
      • Herstellung und Charakterisierung von Heterostrukturen aus 2D Materialien
      • Entwicklung eines PDMS-basierten Mikrofluidiksystems
      • Erforschung der Oberflächenpräparation und der Rückgewinnung von Aluminiumnitrid-Substraten
      • Growth and stability of anisotropic nanoparticles in liquids
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 1: “Impedanzmessplatz für DC/DC-Wandler”
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 2: “Robuste Gestaltung induktiver Energieüberträger für bewegte Anwendungen”
      • Printable soft magnetic polymers for power electronics
      • Stability Under Process Variability for Advanced Interconnects and Devices Beyond 7 nm node
      • LightWave: High Performance Computing of Optical Wave
      • Intelligentes Leistungsmodul
    Portal Research
  • Teaching
  • Clean Room Laboratory
  • µe-bauhaus erlangen-nürnberg
    • At a Glance
    • µe-bauhaus erlangen-nürnberg manifesto
    • Background
    Portal µe-bauhaus erlangen-nürnberg
  1. Home
  2. Research
  3. Anorganische Dünnschichtelektronik
  4. Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)

Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)

In page navigation: Research
  • Silicon Semiconductor Technology
  • Wide-Bandgap Devices
  • Anorganic Thin Film Electronics
  • Anorganische Dünnschichtelektronik
    • GRK 1161: Disperse systems for electronic applications - subproject electron devices in a nano-crystalline matrix
    • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
    • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
    • Engineering of Nanoelectronic Materials - B6 (Druckbare Elektronik)
    • Local leakage currents in nanoparticulate films
  • Quantum Technologies
  • Other Projects

Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)

Engineering of Nanoelectronic Materials - B6 (Druckbare Elektronik)

(Third Party Funds Group – Sub project)

Overall project: EXC 315: New Materials and Processes - Hierarchical Structure Formation for Functional Devices
Project leader: Lothar Frey
Project members: Maximilian Rumler, Zeynep Meric, Sebastian Weis
Start date: 1. November 2012
End date: 31. October 2017
Acronym: EXC 315/2
Funding source: DFG / Exzellenzinitiative (EXIN)
URL:

Abstract

Processing and physics of thin-film devices based on group-IV nanoparticles are in the focus of this project.

It has been shown in an earlier stage of the project that formulation, deposition, and thermal post treatment define the electrical behavior of silicon nanoparticle thin films. Dedicated passivation shemes have been developed for suppression of surface effects on the device characteristics.

In the current period the research is extended to germanium and SiGe alloys in different compositions. Special focus is laid on high-level device-related issues as the influence of geometry on electrical parameters, the optimization of metal-to-semiconductor contacts, and the integration of devices into functional latches . Photonic sintering for modification of inter-particle contacts is targeted additionally.

Publications

    Chair of Electron Devices
    FAU Erlangen-Nürnberg

    Cauerstr. 6
    91058 Erlangen
    • Imprint
    • Privacy
    • Accessibility
    • Facebook
    • RSS Feed
    • Twitter
    • Xing
    Up