• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Electron Devices
  • FAUTo the central FAU website
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Chair of Electron Devices
Navigation Navigation close
  • About Us
  • Research
    • Silicon Semiconductor Technology
      • Realisierung von Koppelkondensatoren für Betriebsspannungen über 1200V durch Integration von Parallelwiderständen
      • Hybrid polymer based Bragg grating sensors – Fundamental investigations and application
      • A Synergetic Training Network on Energy beam Processing: from Modelling to Industrial Applications
      • Atomic layer deposition of dopant source layers for semiconductor doping – Characterization and modelling of drive-in processes
    • Wide-Bandgap Devices
      • Untersuchungen zur Leistungsdichte und Effizienz eines isolierenden DC/DC-Wandlers in GaN-Technologie
      • Dynamic Characterization of Molded Devices and Fundamental Investigations on Reliability
      • Charge compensation in 4H silicon carbide – Simulation, modelling and experimental verification
      • SiC-BIFET: Untersuchungen zu bipolaren SiC-Feldeffekttransistoren für das Mittelspannungsnetz
      • Development of semiconductor sensors based on silicon carbide
      • Kristallzüchtung von Nitrid-Einkristallen mit hoher Reinheit
    • Anorganische Dünnschichtelektronik
      • GRK 1161: Disperse systems for electronic applications – subproject electron devices in a nano-crystalline matrix
      • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
      • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
      • Engineering of Nanoelectronic Materials – B6 (Druckbare Elektronik)
      • Local leakage currents in nanoparticulate films
    • Quantum Technologies
    • Other Projects
      • Herstellung und Charakterisierung von Heterostrukturen aus 2D Materialien
      • Entwicklung eines PDMS-basierten Mikrofluidiksystems
      • Erforschung der Oberflächenpräparation und der Rückgewinnung von Aluminiumnitrid-Substraten
      • Growth and stability of anisotropic nanoparticles in liquids
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 1: “Impedanzmessplatz für DC/DC-Wandler”
      • Leistungszentrum Elektroniksysteme (LZE), Teilprojekt 2: “Robuste Gestaltung induktiver Energieüberträger für bewegte Anwendungen”
      • Printable soft magnetic polymers for power electronics
      • Stability Under Process Variability for Advanced Interconnects and Devices Beyond 7 nm node
      • LightWave: High Performance Computing of Optical Wave
      • Intelligentes Leistungsmodul
    Portal Research
  • Teaching
  • Clean Room Laboratory
  • µe-bauhaus erlangen-nürnberg
    • At a Glance
    • µe-bauhaus erlangen-nürnberg manifesto
    • Background
    Portal µe-bauhaus erlangen-nürnberg
  1. Home
  2. Research
  3. Anorganische Dünnschichtelektronik
  4. Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors

Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors

In page navigation: Research
  • Silicon Semiconductor Technology
  • Wide-Bandgap Devices
  • Anorganic Thin Film Electronics
  • Anorganische Dünnschichtelektronik
    • GRK 1161: Disperse systems for electronic applications - subproject electron devices in a nano-crystalline matrix
    • Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors
    • Thin-Film Transistors with Novel Architecture for RF Circuits and Systems
    • Engineering of Nanoelectronic Materials - B6 (Druckbare Elektronik)
    • Local leakage currents in nanoparticulate films
  • Quantum Technologies
  • Other Projects

Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors

Liquid-phase processing of silicon thin films and electron devices based on polysilane precursors

(Third Party Funds Single)

Overall project:
Project leader: Lothar Frey
Project members: Abid Shaukat Ali
Start date: 15. March 2014
End date: 14. March 2017
Acronym: FR 713/9-1
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
URL:

Abstract

The deposition of silicon thin films from dissolved and formulated polysilane precursors and the integration of the layers into electronic applications are the main goals of the proposed project.In comparison to other inorganic materials from liquid-phase deposition, silicon is supposed to offer advantages in terms of fundamental device parameters (e.g. carrier mobilities), stability and reliability, as well as controllability of material parameters (e.g. doping).The scientific challenges of the proposed project are significant improvements in- reproducibility and yield of the synthesis of cyclosilane and polysilane precursor solutions for application in spin casting, spray casting or printing techniques,- the functionality of silane molecules. A novel approach of this proposal is the synthesis of multi-functional silane molecules delivering the capability of in situ doping or crystallization enhancement during layer transformation, as well as- the transformation of the deposited precursor films into amorphous, nano-, or polycrystalline silicon films meeting the requirements of printed electronics manufacturing. In detail we will investigate

  • thermal and photonic annealing for reduced energy dissipation into the substrate, making the processing suited for technical glasses or plastic substrates,
  • utilization of metal-induced crystallization techniques lowering the overall thermal budget of thin-film processing. Metal-induced crystallization is applied to pre-deposited amorphous films from polysilane precursors as well as directly integrated into the precursor transformation by incorporation of active species during molecule synthesis or ink formulation.

The applicability of the amorphous and polysilicon thin films is demonstrated by preparation of selected unipolar and bipolar electron devices, namely thin-film transistors and solar cells. Consequently, the processing activities of the proposal aim at an optimization of the electronic properties of the silicon thin films with respect to the target devices, i.e. defect control, charge transport, as well as doping.Two institutes with outstanding expertise in the areas of silicon chemistry (TU BA Freiberg) and devices and process technology (FAU Erlangen) will closely cooperate on this project.

Publications

  • Gerwig M., Ali AS., Neubert D., Polster S., Bohme U., Franze G., Rosenkranz M., Popov A., Ponomarev I., Jank M., Viehweger C., Brendler E., Frey L., Kroll P., Kroke E.:
    From Cyclopentasilane to Thin-Film Transistors
    In: Advanced Electronic Materials 7 (2021), p. 1-13
    ISSN: 2199-160X
    DOI: 10.1002/aelm.202000422

Chair of Electron Devices
FAU Erlangen-Nürnberg

Cauerstr. 6
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up